
	

	
	 	

BASICS	OF	BINARY	
FIRMWARE	
ANALYSIS	
Pivot	Project	–	http://www.pivotproject.org	
	

Jaime	Geiger	

GRIMM	|	jaime	[at]	grimm-co.com	

Pivot	Project		Basics	of	Binary	Firmware	Analysis	
	

1	

Summary	
Device	firmware	blobs	can	be	obtained	by	downloading	software	updates	from	the	device	
manufacturer	or	by	pulling	them	off	of	the	device	itself.	Once	an	image	is	obtained	it	can	be	
analyzed	to	figure	out	how	it	is	put	together	and	what	it	contains.		
	
This	exercise	is	designed	to	give	an	introduction	to	analyzing	a	firmware	binary	through	guided	
exploration.	This	lab	walks	through	the	analysis	and	extraction	of	a	Dlink	DCS-930L	Camera	
firmware	binary.	The	image	is	NOT	a	factory	image	and	has	malicious	content,	which	you	will	
identify.		

Tools	
binwalk	–	A	tool	for	analyzing	and	identifying	the	contents	of	binary	blobs.	Its	features	include	
detecting	and	extracting	known	file	types,	analyzing	binary	entropy,	and	detecting	differences	
between	binaries.	It	is	the	focus	of	this	exercise.		
dd	–	Affectionately	known	as	“Data	Destroyer.”	It	has	many	uses,	but	you	will	use	it	for	copying	
out	parts	of	an	image	file.		
file	–	Identifies	files	based	on	their	“magic”	numbers.	(see	
https://en.wikipedia.org/wiki/List_of_file_signatures)	
xxd	–	Command	line	hex	dump	tool.	
lzma	–	Compression	tool.	
cpio	–	Compression	tool.	
	

Requirements	
• An	Ubuntu	VM	(14.04	or	higher)	

o cpio,	lzma,	python	2.7,	dd,	xxd,	and	file	should	already	be	installed	
• pivot_bfa.bin	–	the	binary	file	you	will	be	analyzing	

	

Procedure	
1. Log	into	the	VM	and	open	a	Terminal	

	
2. Install	binwalk	

i. wget	https://github.com/devttys0/binwalk/archive/v2.1.1.tar.gz	
ii. tar	xf	v2.1.1.tar.gz	
iii. cd	binwalk-2.1.1	
iv. sudo	python	setup.py	install	

	
3. Run	binwalk	on	the	binary	file	

i. binwalk	pivot_bfa.bin	

Pivot	Project		Basics	of	Binary	Firmware	Analysis	
	

2	

	
Questions	

a. What	are	the	two	uImages?	
	
	
b. What	is	Uboot?	

	
	

c. What	CPU	architecture	was	this	firmware	designed	to	run	on?	
	
	

d. What	OS	type	is	this	firmware?	
	
	

e. How	is	the	firmware	compressed	(compression	type)?	
	
	

4. Extract	the	Linux	image	from	pivot_bfa.bin	
i. dd	if=pivot_bfa.bin	of=linux.bin.lzma	skip=327744	bs=1	

	
if	–	the	source	bin	
of	–	the	destination	file	
skip	–	how	many	blocks	to	skip	(if	block	size	is	1,	then	this	is	the	number	of	bytes	to	skip)	
bs	–	block	size	in	bytes	

	
5. Try	to	decompress	the	extracted	Linux	image	

i. lzma	--help	
ii. lzma	-d	linux.bin.lzma	

	
You	can	use	the	--help	option	to	discover	other	useful	options.	When	running	new	
commands,	you	should	always	try	and	understand	what	they	are	doing.	In	this	case	the	
option	“-d”	is	for	decompressing	the	image.		
	
The	extraction	should	fail.	
	
Question	

a. Can	you	think	of	a	reason	for	the	failure?	
	
	

6. Examine	the	end	of	the	extracted	Linux	image	
i. xxd	linux.bin.lzma	|	tail	

Pivot	Project		Basics	of	Binary	Firmware	Analysis	
	

3	

	
The	xxd	command	shows	a	hex	dump	of	the	provided	file.	Tail	will	cut	the	output	down	
to	the	last	10	lines	of	output.	Since	xxd	outputs	16	bytes	per	line,	this	will	output	the	last	
160	bytes	of	the	file.		
	
Question	

a. What	do	you	notice	about	the	bytes	at	the	end	of	the	file?	How	might	this	affect	
the	extraction	above?	

	
	

7. Re-extract	the	Linux	image	without	trailing	bytes		
i. We	need	to	find	the	last	line	where	there	isn't	just	ffff's	and	then	take	them	out.	
ii. xxd	linux.bin.lzma	|	fgrep	-v	"................"	|	tail	
iii. We	can	take	the	last	address	and	use	the	count	option	to	stop	copying	right	

before	the	ffff's	start.	They	are	just	padding!	
iv. dd	if=pivot_bfa.bin	of=linux.bin.lzma	skip=327744	bs=1	count=$((0x02f9da0	+	

12))	
v. lzma	-d	linux.bin.lzma	

	
Again,	xxd	is	used	to	dump	out	the	hex	bytes	of	the	file.	The	hexdump	output	is	then	fed	
through	fgrep	with	the	-v	option	to	get	the	inverse	of	the	match.	The	quoted	argument	
provided	to	fgrep	represents	the	left	hand	column	of	the	xxd	output.	We	need	to	find	
the	offset	at	which	the	padding	with	ff’s	starts	so	the	fgrep	command	as	it	is	used	here	
will	essentially	get	rid	of	all	xxd	output	lines	that	are	non-printable	(0xff	is	not	printable).	
Then	the	tail	command	is	used	to	see	the	end	of	the	output.		
	
The	count	argument	that	is	fed	to	dd	is	the	number	of	bytes	to	copy	from	the	output	file	
starting	from	the	skip	position.	The	syntax	used	after	count=	may	be	confusing.	
Essentially,	it	calculates	the	integer	value	of	the	address	at	which	the	ff’s	start.	The	+12	
means	that	the	ff’s	start	12	bytes	after	the	start	of	the	last	line	of	non-padding	bytes.	If	
you	count	the	bytes	on	the	last	line	of	the	xxd	output	from	the	above	step,	this	will	
make	sense.		

	
8. Run	binwalk	on	the	extracted	and	decompressed	image	

i. binwalk	linux.bin	
	

Questions	
a. How	many	LZMA	images	are	in	this	binary	file?	

	
	

b. Based	on	the	entries	below	the	first	LZMA	entry,	what	do	you	think	it	is?	

Pivot	Project		Basics	of	Binary	Firmware	Analysis	
	

4	

	
	

9. Extract	known	file	types	from	the	extracted	and	decompressed	image	
i. binwalk	-ez	linux.bin	

	
The	-e	option	extracts	known	file	types	from	the	binary	file.	The	-z	option	just	carves	
them	out	instead	of	attempting	to	extract	them	fully.		
	
This	is	an	alternative	to	using	dd:		
dd	if=linux.bin	of=file	bs=1	skip=<start	number>	count=$((<start	of	next	file	area>	-	
<start	number>))	
	

10. Analyze	the	extracted	files	
i. cd	_linux.bin.extracted	
ii. binwalk	3AC000.7z	
iii. mv	3AC000.7z	fs.bin.lzma	
iv. lzma	-d	fs.bin.lzma	
v. binwalk	fs.bin	
vi. file	fs.bin	

	
The	3AC000.7z	file	is	actually	an	lzma	compressed	archive.	Since	the	lzma	utility	requires	
that	the	extension	of	a	file	it	is	told	to	extract	is	lzma,	the	file	has	to	be	renamed.	After	
lzma	extraction	is	done,	the	extracted	file	is	analyzed	with	binwalk	and	file.		
	
Questions	

a. What	do	all	of	these	entries	have	in	common?	(after	running	binwalk	on	fs.bin)	
	
	

b. What	kind	of	archive	is	this?	(after	running	file	on	fs.bin)	
	
	

11. Extract	the	file	system	
i. cpio	-i	--no-absolute-filenames	<	fs.bin	
ii. ls	

	
We	have	now	extracted	the	root	filesystem!	

	
12. Analyze	the	files	on	the	firmware	file	system	for	anything	malicious	

i. Explore	the	files	inside	the	etc_ro	directory	(don't	go	into	any	folders	under	it)	
ii. Find	the	internet.sh	script	on	the	filesystem.	Hint:	use	the	"find"	command!	

	

Pivot	Project		Basics	of	Binary	Firmware	Analysis	
	

5	

Questions	
a. What	file	appears	to	be	a	startup	script?	

	
	

b. Is	there	any	malicious	content	in	the	startup	script?	If	so	what	is	it	and	why	is	it	
malicious?	

	
	

c. Is	there	any	malicious	content	in	the	internet.sh	script?	If	so	what	is	it	and	why	is	
it	malicious?	

	

Conclusion	
Through	the	use	of	tools	like	binwalk,	binaries	can	be	examined	and	analyzed	for	known	file	
types	contained	within	them.	This	exercise	was	meant	to	acquaint	you	with	some	of	the	
beginner	techniques	that	firmware	reverse	engineers	use	to	identify	binary	files	containing	
device	firmwares.	Through	the	lab	you	were	able	to	analyze	the	firmware	update	file,	extract	
the	filesystem,	and	identify	malicious	components	contained	within	it.		
	
I	hope	you	have	enjoyed	this	exercise.	Please	send	any	feedback	or	questions	to	me	at	jaime	
[at]	grimm-co.com	

